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The inlet and outlet locations of expansion chambers can significantly affect the acoustic
attenuation performance of the silencer, due to their control over the excitation and
suppression of higher order modes. By combining the continuity conditions of the acoustic
pressure and particle velocity with the orthogonality relations of Fourier–Bessel functions
at the inlet and outlet discontinuities, the present study develops a three-dimensional
analytical approach to determine the transmission loss of circular expansion chambers with
offset inlet and outlet ducts. The results obtained from the present approach are compared
with the classical one-dimensional predictions and the earlier multidimensional works.
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1. INTRODUCTION

The expansion chamber is a common and desirable silencer in pulsating internal flows due
to its usually broad band(s) of acoustic attenuation. By assuming linear waves in a
stationary medium, Davis et al. [1] were the first to introduce a one-dimensional analytical
approach for the expansion chamber. The resulting closed-form expression for
transmission loss was a function of the area expansion ratio and the dimensionless
frequency parameter kl with a periodicity of p, k being the wavenumber and l the chamber
length. This useful attempt of Davis et al., however, excludes wave propagation in the
transverse direction and, therefore, the higher order modes which are generated at the area
discontinuities at the inlet and outlet of the chamber. For particularly short-length
expansion chambers, some evanescent modes excited at these discontinuities may not decay
sufficiently within the chamber, and therefore affect the acoustic attenuation even in the
low frequency region.

The multidimensional wave propagation due to area discontinuities is studied first by
Miles [2]. Following the application of continuity boundary conditions for the acoustic
pressure and particle velocity at the area discontinuities, Miles used the orthogonality
relations of Bessel functions to develop a set of equations and then determined the incident
and reflected waves. However, the work did not include either a numerical calculation or
an experimental validation of the approach. El-Sharkawy and Nayfeh [3] later extended
this work to a two-dimensional axisymmetric treatment of concentric expansion chambers,
and also provided comparisons with the experimental noise reduction measurements for
different expansion and length to diameter ratios. Utilizing the mode-matching technique,
Äbom [4] derived the four-pole parameters that incorporated higher order mode effects
in concentric expansion chambers with extended inlet and outlet. The computed
transmission loss for a circular concentric configuration agreed well with the experiments.
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Selamet and Radavich [5] investigated the effect of length on the acoustical attenuation
performance of concentric expansion chambers, by using an analytical approach following
Miles, a computational solution based on the boundary element method (BEM), and
experiments on an extended impedance tube set-up. The results of all three approaches
were shown to agree well. For a single asymmetric chamber, the same work also presented
an experimental observation of the breakdown of one-dimensional behaviour at the first
asymmetric mode (1, 0) rather than the first radial mode (0, 1) when the inlet and outlet
locations were changed from concentric to offset. The foregoing studies represent the
significant contributions to the understanding of primarily concentric expansion chambers.

Eriksson et al. [6–8] investigated experimentally the effect of inlet/outlet locations and
the chamber length on the propagation of higher order modes in asymmetric expansion
chambers. The offset distance, the offset angle for inlet/outlet locations, and the length of
the chamber were found to have significant effects on the excitation, propagation, and
suppression of the higher order modes. Ih and Lee [9] developed a three-dimensional
analytical model for circular expansion chambers that incorporated mean flow and allowed
for offset inlet and outlet locations. Their results matched the experimental transmission
loss fairly well over a wide frequency range and for l/d ratios from 0·33 to 1·35. However,
they chose to exclude the inlet and outlet ducts and modelled the chamber as a
piston-driven circular rigid tube. The resulting analytical predictions in the absence of end
ducts are expected to show some deviation from the experimental results (performed with
the end ducts), particularly for larger offsets and shorter chambers due to the importance
of decaying non-planar waves in the inlet and outlet ducts. Yi and Lee applied the same
approach to circular expansion chambers with side-inlet/side-outlet and side-inlet/end-out-
let [10, 11]. They also provided comparisons with the experimental results. By employing
the eigenfunction expansion method, Kim and Soedel [12] studied the three-dimensional
acoustic cavities and Lai and Soedel [13] the two-dimensional cavities, and derived the
four-pole parameters. A limited number of asymmetric configurations with offset inlet and
outlet has been studied recently in terms of BEM, and the importance of the effect of
non-planar wave propagation in inlet and outlet ducts on the acoustic attentuation of
expansion chambers has been demonstrated [14].

The objective of the present study is to develop a three-dimensional analytical approach
to facilitate a detailed analysis of the effect of multidimensional wave propagation on the
acoustic attenuation in circular asymmetric expansion chambers with offset inlet and outlet
ducts. Following the Introduction, the analytical approach is described next. While some
analytical results are presented and discussed subsequently, extensive comparisons with
experiments and BEM are deferred to a companion work [15]. The study is concluded with
some final remarks.

2. ANALYTICAL APPROACH

The three-dimensional sound propagation in a circular expansion chamber, as shown
in Figure 1, is governed by the well-known Helmholtz equation [16]

92P+ k2P=0, (1)

where P is the acoustic pressure, k=v/c is the wavenumber, v is the angular frequency,
and c is the speed of sound. By employing the separation of variables, the solutions for
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Figure 1. Asymmetric expansion chamber geometry: d1 = d2 =4·859 cm, d=15·318 cm, d1 = d2 =5·10 cm.

the acoustic pressure may be written, for a wave C travelling in the positive z-direction
in a duct of radius a, as

PC =C00 e−jkz + s
a

n=1

C0nJ0(a0nr/a) ejk0nz

+ s
a

m=1

s
a

n=0

(C+
mn e−jmu +C−

mn ejmu)Jm (amnr/a) ejkmnz, (2)

and, for a wave D travelling in the negative z-direction,

PD =D00 ejkz + s
a

n=1

D0nJ0(a0nr/a) e−jk0nz

+ s
a

m=1

s
a

n=0

(D+
mn e−jmu +D−

mn ejmu)Jm (amnr/a) e−jkmnz. (3)

Here C and D are the complex pressure amplitudes of the waves travelling in the positive
and negative z-directions, and the superscripts + and − designate the positive and
negative u-directions; Jm (x) is the Bessel function of the first kind of order m; amn is the
root satisfying the radial boundary condition of

J'm (amn )=0, (4)

T 1

Roots, amn , of the Bessel function J'm (amn )=0

m/n 0 1 2 3 4 5

0 0·0 3·832 7·016 10·174 13·324 16·470
1 1·841 5·331 8·536 11·706 14·864 18·016
2 3·054 6·706 9·969 13·170 16·348 19·513
3 4·201 8·015 11·346 14·586 17·789 20·973
4 5·318 9·282 12·682 15·964 19·196 22·401
5 6·415 10·520 13·987 17·313 20·576 23·804
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where m and n denote the asymmetric and radial mode numbers (see Table 1 for amn ); and

kmn = k[1− (amn /ka)2]1/2, (5)

is the wavenumber of the mode (m, n). Examining equation (5) for any high order mode
(m, n), kmn will be imaginary when

fQ c
2p 0amn

a 1. (6)

The sign difference between the planar (0, 0) and higher order modes in the exponential
terms of equations (2) and (3) ensures that for a wave travelling, for example, in the
positive direction, the magnitude of all modes will decrease exponentially to zero with
increasing distance when equation (6) is satisfied. The axial particle velocities for waves
C and D are obtained from the momentum equation,

jrvU=−9P, (7)

as

UC =
1

rv 6kC00 e−jkz − s
a

n=1

k0nC0nJ0(a0nr/a) ejk0nz

− s
a

m=1

s
a

n=0

kmn (C+
mn e−jmu +C−

mn ejmu)Jm (amnr/a) ejkmnz7 (8)

and

UD =−
1

rv 6kD00 ejkz − s
a

n=1

k0nD0nJ0(a0nr/a) e−jk0nz

− s
a

m=1

s
a

n=0

kmn (D+
mn e−jmu +D−

mn ejmu)Jm (amnr/a) e−jkmnz7. (9)

For the expansion chamber, equations (2) and (8) are used for waves A, C and E travelling
in the positive z-direction, and equations (3) and (9) for waves B, D and F travelling in
the negative z-direction (see Figure 1).

At the expansion, the boundary conditions reveal, for the pressure,

(PA +PB )=z1 =0 = (PC +PD )=z=0, (on S1), (10)

and, for the velocity,

(UA +UB )=z1 =0 = (UC +UD )=z=0, (on S1); (UC +UD )=z=0 =0, (on S−S1),

(11, 12)
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where S1 and S are the cross-sectional areas of the inlet duct and the chamber, respectively.
For the pressure boundary condition, multiply both sides of equation (10) by
Jt (atsr1/a1) ejt8 dS and integrate over S1 to get, for t=0 and s=0,

[A00 +B00]
a2

1

2
= [C00 +D00]

a2
1

2
+ s

a

n=1

[C0n +D0n ]
aa1

a0n
J0(a0nd1/a)J1(a0na1/a)

+ s
a

m=1

s
a

n=0

[(C+
mn +D+

mn ) e−jmu0 + (C−
mn +D−

mn ) ejmu0]

×
aa1

amn
Jm (amnd1/a)J1(amna1/a), (13)

for t=0 and s=1, 2, . . . , a,

[A0s +B0s ]
a2

1

2
J0(a0s )= s

a

n=1

[C0n +D0n ]J0(a0nd1/a)
a0na1/aJ'0(a0na1/a)
(a0s /a1)2 − (a0n /a)2

+ s
a

m=1

s
a

n=0

[(C+
mn +D+

mn ) e−jmu0 + (C−
mn +D−

mn ) ejmu0]

× Jm (amnd1/a)
amna1/aJ'0(amna1/a)
(a0s /a1)2 − (amn /a)2 , (14)

and for t=1, 2, . . . , a and s=0, 1, . . . , a,

[A+
ts +B+

ts ]
a2

1

2 01−
t2

a2
ts1Jt (ats )= s

a

n=1

[C0n +D0n ]Jt (a0nd1/a)
a0na1/aJ't (a0na1/a)
(ats /a1)2 − (a0n /a)2

+ s
a

m=1

s
a

n=0

[(C+
mn +D+

mn )Jm+ t (amnd1/a) e−jmu0

+ (C−
mn +D−

mn )(−1)tJm− t (amnd1/a) ejmu0]
amna1/aJ't (amna1/a)
(ats /a1)2 − (amn /a)2 . (15)

Multiplying both sides of equation (10) by Jt (atsr1/a1) e−jt8 dS and integrating over S1, the
following equation can be obtained, for t=1, 2, . . . , a and s=0, 1, . . . , a,

[A−
ts +B−

ts ]
a2

1

2 01−
t2

a2
ts1Jt (ats )= s

a

n=1

[C0n +D0n ]Jt (a0nd1/a)
a0na1/aJ't (a0na1/a)
(ats /a1)2 − (a0n /a)2

+ s
a

m=1

s
a

n=0

[(C+
mn +D+

mn )(−1)tJm− t (amnd1/a) e−jmu0

+ (C−
mn +D−

mn )Jm+ t (amnd1/a) ejmu0]
amna1/aJ't (amna1/a)
(ats /a1)2 − (amn /a)2 . (16)
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For the two velocity boundary conditions, multiply both equations (11) and (12) by
Jt (atsr/a) ejtu dS and integrate equation (11) over S1 and equation (12) over S−S1, and then
add these two integral equations to yield, for t=0 and s=0,

[A00 −B00]a2
1 = [C00 −D00]a2, (17)

for t=0 and s=1, 2, . . . , a,

k[A00 −B00]
aa1

a0s
J0(a0sd1/a)J1(a0sa1/a)

− s
a

n=1

k1,0n [A0n −B0n ]J0(a0sd1/a)
a0sa1/aJ0(a0n )J'0(a0sa1/a)

(a0n /a1)2 − (a0s /a)2

− s
a

m=1

s
a

n=0

k1,mn [(A+
mn −B+

mn )+ (A−
mn −B−

mn )]

× Jm (a0sd1/a)
a0sa1/aJm (amn )J'm (a0sa1/a)

(amn /a1)2 − (a0s /a)2

=−k0s [C0s −D0s ]
a2

2
J2

0(a0s ), (18)

and for t=1, 2, . . . , a and s=0, 1, . . . , a,

k[A00 −B00]
aa1

ats
Jt (atsd1/a)J1(atsa1/a)

− s
a

n=1

k1,0n [A0n −B0n ]Jt (atsd1/a)
atsa1/aJ0(a0n )J'0(atsa1/a)

(a0n /a1)2 − (ats /a)2

− s
a

m=1

s
a

n=0

k1,mn [(A+
mn −B+

mn )Jt+m (atsd1/a)+ (A−
mn −B−

mn )(−1)mJt−m (atsd1/a)]

×
atsa1/aJm (amn )J'm (atsa1/a)

(amn /a1)2 − (ats /a)2

=−kts [C+
ts −D+

ts ]
a2

2 01−
t2

a2
ts1J2

t (ats ) e−jtu0, (19)

where

k1,mn = k[1− (amn /ka1)2]1/2. (20)
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Similarly, multiply both equations (11) and (12) by Jt (atsr/a) e−jtu dS and integrate equation
(11) over S1 and equation (12) over S−S1, and then add these two integral equations to
yield, for t=1, 2, . . . , a and s=0, 1, . . . , a,

k[A00 −B00]
aa1

ats
Jt (atsd1/a)J1(atsa1/a)

− s
a

n=1

k1,0n [A0n −B0n ]Jt (atsd1/a)
atsa1/aJ0(a0n )J'0(atsa1/a)

(a0n /a1)2 − (ats /a)2

− s
a

m=1

s
a

n=0

k1,mn [(A+
mn −B+

mn )(−1)mJt−m (atsd1/a)

+(A−
mn −B−

mn )Jt+m (atsd1/a)]
atsa1/aJm (amn )J'm (atsa1/a)

(amn /a1)2 − (ats /a)2

=−kts [C−
ts −D−

ts ]
a2

2 01−
t2

a2
ts1J2

t (ats ) ejtu0. (21)

The detailed derivation of equations (16) and (21) is given in Appendix A.
At the contraction, the boundary conditions require, for the pressure,

(PC +PD )=z= l =(PE +PF )=z2 =0, (on S2), (22)

and, for the velocity,

(UC +UD )=z= l =(UE +UF )=z2 =0, (on S2); (UC +UD )=z= l =0, (on S−S2).

(23, 24)

Using the same procedure as for the expansion, equation (22) gives, for t=0 and s=0,

[C00 e−jkl +D00 ejkl]
a2

2

2
+ s

a

n=1

[C0n ejk0nl +D0n e−jk0nl]
aa2

a0n
J0(a0nd2/a)J1(a0na2/a)

+ s
a

m=1

s
a

n=0

[(C+
mn +C−

mn ) ejkmnl +(D+
mn +D−

mn ) e−jkmnl]

×
aa2

amn
Jm (amnd2/a)J1(amna2/a)= (E00 +F00)

a2
2

2
, (25)

for t=0 and s=1, 2, . . . , a,

s
a

n=1

[C0n ejk0nl +D0n e−jk0nl]J0(a0nd2/a)
a0na2/aJ'0(a0na2/a)
(a0s /a2)2 − (a0n /a)2

+ s
a

m=1

s
a

n=0

[(C+
mn +C−

mn ) ejkmnl +(D+
mn +D−

mn ) e−jkmnl]Jm (amnd2/a)

×
amna2/aJ'0(amna2/a)
(a0s /a2)2 − (amn /a)2 = (E0s +F0s )

a2
2

2
J0(a0s ), (26)
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for t=1, 2, . . . , a and s=0, 1, . . . , a,

s
a

n=1

[C0n ejk0nl +D0n e−jk0nl]Jt (a0nd2/a)
a0na2/aJ't (a0na2/a)
(ats /a2)2 − (a0n /a)2

+ s
a

m=1

s
a

n=0

[(C+
mn ejkmnl +D+

mn e−jkmnl)Jm+ t (amnd2/a)

+(C−
mn ejkmnl +D−

mn e−jkmnl)(−1)tJm− t (amnd2/a)]
amna2/aJ't (amna2/a)
(ats /a2)2 − (amn /a)2

= (E+
ts +F+

ts )
a2

2

2 01−
t2

a2
ts1Jt (ats ), (27)

and

s
a

n=1

[C0n ejk0nl +D0n e−jk0nl]Jt (a0nd2/a)
a0na2/aJ't (a0na2/a)
(ats /a2)2 − (a0n /a)2

+ s
a

m=1

s
a

n=0

[(C+
mn ejkmnl +D+

mn e−jkmnl)(−1)tJm− t (amnd2/a)

+(C−
mn ejkmnl +D−

mn e−jkmnl)Jm+ t (amnd2/a)]
amna2/aJ't (amna2/a)
(ats /a2)2 − (amn /a)2

= (E−
ts +F−

ts )
a2

2

2 01−
t2

a2
ts1Jt (ats ). (28)

From the velocity boundary conditions, equations (23) and (24), for t=0 and s=0,

[C00 e−jkl −D00 ejkl]a2 = (E00 −F00)a2
2 , (29)

for t=0 and s=1, 2, . . . , a,

k0s [C0s ejk0sl −D0s e−jk0sl]
a2

2
J2

0(a0s )=−k(E00 −F00)
aa2

a0s
J0(a0sd2/a)J1(a0sa2/a)

+ s
a

n=1

k2,0n (E0n −F0n )J0(a0sd2/a)
a0sa2/aJ0(a0n )J'0(a0sa2/a)

(a0n /a2)2 − (a0s /a)2

+ s
a

m=1

s
a

n=0

k2,mn [(E+
mn −F+

mn )+ (E−
mn −F−

mn )]Jm (a0sd2/a)

×
a0sa2/aJm (amn )J'm (a0sa2/a)

(amn /a2)2 − (a0s /a)2 , (30)
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for t=1, 2, . . . , a and s=0, 1, . . . , a,

kts [C+
ts ejktsl −D+

ts e−jktsl]
a2

2 01−
t2

a2
ts1J2

t (ats )=−k(E00 −F00)
aa2

ats
Jt (atsd2/a)J1(atsa2/a)

+ s
a

n=1

k2,0n (E0n −F0n )Jt (atsd2/a)
atsa2/aJ0(a0n )J'0(atsa2/a)

(a0n /a2)2 − (ats /a)2

+ s
a

m=1

s
a

n=0

k2,mn [(E+
mn −F+

mn )Jt+m (atsd2/a)+ (E−
mn −F−

mn )(−1)mJt−m (atsd2/a)]

×
atsa2/aJm (amn )J'm (atsa2/a)

(amn /a2)2 − (ats /a)2 , (31)

and

kts [C−
ts ejktsl −D−

ts e−jktsl]
a2

2 01−
t2

a2
ts1J2

t (ats )=−k(E00 −F00)
aa2

ats
Jt (atsd2/a)J1(atsa2/a)

+ s
a

n=1

k2,0n (E0n −F0n )Jt (atsd2/a)
atsa2/aJ0(a0n )J'0(atsa2/a)

(a0n /a2)2 − (ats /a)2

+ s
a

m=1

s
a

n=0

k2,mn [(E+
mn −F+

mn )(−1)mJt−m (atsd2/a)+ (E−
mn −F−

mn )Jt+m (atsd2/a)]

×
atsa2/aJm (amn )J'm (atsa2/a)

(amn /a2)2 − (ats /a)2 , (32)

where

k2,mn = k[1− (amn /ka2)2]1/2. (33)

To determine the transmission loss of the expansion chamber, (1) the dimensions of the
inlet pipe are assumed such that the incoming wave A is planar, and its magnitude A00 is
chosen to be unity for convenience, and (2) an anechoic termination is imposed at the exit
of the chamber by setting the reflected wave F to zero. Thus, equations (13)–(19), (21),
and (25)–(32) give a large (theoretically infinite) number of relations 4(2t+1)(s+1) for
a large number of unknowns 4(2m+1)(n+1). The unknowns are the pressure magnitudes
for incident and reflected waves in the inlet duct, the chamber, and outlet duct
(Bmn , Cmn , Dmn and Emn ). Since higher modes have a diminishing effect on the solution, t
and m can be truncated to p and s and n to q resulting in 4(2p+1)(q+1) equations with
4(2p+1)(q+1) unknowns. The values of p and q needed for a converged solution depend
on the magnitude of the area transition, the length of the chamber, and the frequency range
of interest. For the geometries and frequencies investigated here (see Figure 1 and the
companion paper [15]), p=5 and q=5 were found to be sufficient. Once equations
(13)–(19), (21), and (25)–(32) are solved, the transmission loss is determined in the centre
of the duct by

TL=−20 log10 6(a2/a1)bE00 e−jkl2 + s
q

n=1

E0n ejk2,0nl2b7. (34)
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Figure 2. Transmission loss of circular expansion chamber with l/d=0·205, d1 = d2 =5·10 cm and u0 =180°:
——, analytical, present (chamber and end ducts); . . . . . , one-dimensional; – – –, analytical, Ih and Lee (chamber
only).

Note that the non-propagating modes leaving the expansion chamber in the outlet duct
will decay rapidly over the short distance l2 due to the smaller duct diameter. This distance
is chosen so that the higher modes will have a negligible effect on the transmission loss
calculations.

Figure 3. Transmission loss of circular expansion chamber with l/d=3·525, d1 = d2 =5·10 cm and u0 =180°:
——, analytical, present (chamber and end ducts); . . . . . , one-dimensional; – – –, analytical, Ih and Lee (chamber
only).
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Figure 4. The effect of p-terms on transmission loss of circular expansion chamber with l/d=0·205,
d1 = d2 =5·10 cm and u0 =180°: ——, p=0, q=0; . . . . . , p=1, q=0; – – –, p=2, q=0; — — —, p=3,
q=0; — · — ·, p=4, q=0.

Setting p=0 and q=0 in equations (13), (17), (25) and (29) yields the classical
transmission loss of a one-dimensional expansion chamber as, for a1 = a2,

TL=10 log10 $1+
1
4 0m−

1
m1

2

sin2 kl%. (35)

The foregoing formulation allows u0 to vary between 0 and 180°. An extensive
experimental and computational work was conducted to validate the formulation
presented here. While the detailed comparisons among the analytical development and the
experimental study and the boundary element predictions are described and discussed in
a companion paper [15], two extreme configurations are considered next for illustration
purposes.

3. RESULTS AND DISCUSSION

Consider expansion chambers of l/d=0·205 and l/d=3·525 with the relative offset
angle u0 =180° (see Figure 1 for the remaining dimensions). Figures 2 and 3 show
illustrative comparisons of transmission loss results from the present three-dimensional
approach (p=5, q=5) and the one-dimensional theory for l/d=0·205 and 3·525,
respectively. The short expansion chamber of Figure 2 clearly shows no similarity between
the one-dimensional results and the three-dimensional predictions of the present approach.
For the long expansion chamber, a good agreement is shown in Figure 3 at low frequencies,
whereas at higher frequencies noticeable magnitude differences are observed before the
complete breakdown of the repeating one-dimensional domes. Thus, the higher order
modes can decay sufficiently in the long chamber leading to axially one-dimensional
propagation at low frequencies. With increasing frequency, however, additional modes are
excited at the area discontinuities and do not decay completely. Non-planar effects then



20

5

10

15

0
5000 1000 1500 2000 2500 3000

Frequency (Hz)

T
ra

n
sm

is
si

o
n

 l
o

ss
 (

d
B

)

(0.1)

.   . . 612

Figure 5. The effect of q-terms on transmission loss of circular expansion chamber with l/d=0·205,
d1 = d2 =5·10 cm and u0 =180°: ——, p=4, q=0; . . . . . , p=4, q=1; – – –, p=4, q=2; — —, p=4, q=3.

spread throughout the length of the chamber and influence the acoustic attenuation
performance.

Also included in Figures 2 and 3 are the transmission loss results from Ih and Lee’s
analytical approach, which chose not to include the end ducts and used cross-sectional
averages on the inlet and outlet ports of the chamber. Thus, the differences between the
present predictions and Ih and Lee’s approach may become pronounced for the
short-length expansion chamber (note, for example, the second attenuation band in Figure
2). Figure 2 for the short expansion chamber illustrates the importance of the exponential
decay of the non-planar wave effects in the inlet and outlet ducts on the transmission loss
performance. Due to the very short chamber length, higher order modes excited at the inlet
discontinuity do not have a sufficient length to decay in the expansion chamber. Some
modes pass through the chamber and combine with the higher order modes excited at the
outlet discontinuity, which gives the outlet duct a large multidimensional component.
These modes passed on to the exit duct will then decay quickly in the much smaller outlet
diameter, resulting in essentially planar wave propagation in a short distance. This fact
provided the motivation for this study to develop an analytical approach which combines
multidimensional wave propagation in the chamber with the two offset end ducts. The
differences become less pronounced with increasing length of the expansion chamber, since
most higher order modes excited at the inlet decay over the longer chamber length before
reaching the outlet (see Figure 3).

El-Sharkawy and Nayfeh [3] reported for their configuration that five terms of Bessel
function expansion were sufficient to converge to 0·1% accuracy. Figures 4 and 5
demonstrate the contribution from individual terms for the short chamber of Figure 2.
Within the frequency range considered here, five terms also appear to be sufficient for the
convergence in terms of p (Figure 4). While p= q=5 is used in the present study uniformly
to ensure accuracy, it is interesting to note that combining the five terms of Figure 4 with
only one additional term in q, that is p=4, q=1, would yield a reasonable final
prediction.
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4. CONCLUDING REMARKS

A three-dimensional analytical approach has been developed to predict the acoustic
attenuation performance of the circular expansion chamber with offset inlet/outlet. The
analytical approach provides expressions for the acoustic pressure and velocity in the
chamber and the attached ducts. These results may then be used to determine transmission
loss and four-pole parameters. While the former is used in the present study, the latter can
also be evaluated by following an approach similar to that of Sahasrabudhe et al. [17, 18].
The effect of inlet and outlet ducts on transmission loss is illustrated by comparing the
present predictions with the ducts attached to those with the ducts removed (simple
openings). For particularly short expansion chambers, the effect of end ducts is found to
be pronounced due to the decaying higher order modes in the inlet and outlet ducts. It
is this effect that led to the development of a three-dimensional analytical approach of the
present study to couple wave propagation in the chamber with the two end ducts. Since
the Mach number in expansion chambers is usually low in numerous applications, the
convective effect of mean flow on the acoustic attenuation is negligible (see, for example,
Ji and Sha [19]), therefore excluded from the present work. An extensive experimental and
computational validation effort is presented in a companion paper [15].
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APPENDIX A: DERIVATION OF EQUATIONS (16) AND (21)

For the pressure boundary condition, multiply both sides of equation (10) by
Jt (atsr1/a1) e−jt8 dS, and integrate over S1 to get

g
2p

0 g
a1

0 6[A00 +B00]+ s
a

n=1

[A0n +B0n ]J0(a0nr1/a1)

+ s
a

m=1

s
a

n=0

[(A+
mn +B+

mn ) e−jm8 +(A−
mn +B−

mn ) ejm8]Jm (amnr1/a1)7
×Jt (atsr1/a1) e−jt8r1 dr1 d8

=g
2p

0 g
a1

0 6[C00 +D00]+ s
a

n=1

[C0n +D0n ]J0(a0nr/a)

+ s
a

m=1

s
a

n=0

[(C+
mn +D+

mn ) e−jmu +(C−
mn +D−

mn ) ejmu]Jm (amnr/a)7
×Jt (atsr1/a1) e−jt8r1 dr1 d8. (A1)

Using Graf’s addition theorem for Bessel functions [20],

Jm (mr) e−jmu = s
a

P=−a

Jm+P (md1)JP (mr1) e−j(P8+mu0), (A2)

for the right side of equation (A1) to transform the co-ordinates of chamber to those of
the inlet duct, and then integrating over 8 from 0 to 2p for both sides yields

g
a1

0

s
a

n=0

[A−
tn +B−

tn ]Jt (atnr1/a1)Jt (ltsr1/a1)r1 dr1

=g
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0 6 s
a

n=1
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+ s
a
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s
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[(C+
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mn )(−1)tJm− t (amnd1/a) e−jmu0

+(C−
mn +D−

mn )Jm+ t (amnd1/a) ejmu0]Jt (amnr1/a)7Jt (atsr1/a1)r1 dr1. (A3)
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Integrating over r1 from 0 to a1, using the integral relations of Bessel functions [20]

r
l2 − m2 {mJm (lr)J'm (mr)− lJm (mr)J'm (lr)} (l$ m)

g
G

G

F

f
g rJm (lr)Jm (mr) dr=

r2

2 6[J'm (lr)]2 +$1−
m2

l2r2%J2
m (lr)7 (l= m)

, (A4)

and applying equation (4) for the radial boundary condition gives

[A−
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ts ]
a2

1

2 01−
t2

a2
ts1Jt (ats )= s

a

n=1
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+ s
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(ats /a1)2 − (amn /a)2

(A5)

which is identical to equation (16).
For the velocity boundary conditions, multiply both sides of equations (11) and (12) by

Jt (atsr/a) e−jtu dS and integrate equation (11) over S1 and equation (12) over S−S1, and
then add these two integral equations to get

g
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0 g
a1
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Using Graf’s addition theorem for Bessel functions (A2) for the left side of equation (A6)
to transform the co-ordinates of the chamber to those of the inlet duct, and then
integrating over 8 for the left side and over u for the right side, yields

g
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Integrating r1 and r for the left and right sides of equation (A7), and using the integral
relation (A4) for Bessel functions, yields
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which is identical to equation (21).

APPENDIX B: NOMENCLATURE

a,a1,a2 radii of expansion chamber, inlet and outlet ducts
A,B,C,D,E,F pressure coefficients
c speed of sound
f frequency
j =z−1, imaginary unit
Jm (x) Bessel function of the first kind of order m
k planar wavenumber
kmn ,kl,mn ,k2,mn axial wavenumbers in expansion chamber, inlet and outlet ducts
l length of expansion chamber
m asymmetric mode number, expansion ratio
n radial mode number
p number of m-terms after truncation
P acoustic pressure
q number of n-terms after truncation
(r,u,z) cylindrical co-ordinate system for chamber
(r1,8,z1) cylindrical co-ordinate system for inlet pipe
(r2,8,z2) cylindrical co-ordinate system for outlet pipe
s orthogonal expansion terms
S,S1,S2 cross-sectional areas of expansion chamber, inlet and outlet ducts
t orthogonal expansion terms
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TL transmission loss
U particle velocity
amn zeros of Jm (amn )=0
d1,d2 inlet and outlet offset distances from the centre of expansion chamber
u0 relative angle between inlet and outlet
r medium density
v angular frequency


